MV 系列微型激光测振仪

用户手册

2025-2

攀感(苏州)光子科技有限公司 OmniSensing (Suzhou) Photonics Technology Co., Ltd.

目录

1. 产品描述	3
2. 接口说明	3
3. 传感器接线安装和上位机 IP 设置	4
4. 软件说明	5
4.1 菜单栏功能介绍	5
4.2模块连接界面	8
4.3 实时测试界面	
4.4 参数设置界面	
4.5 高频测振界面	
4.6数据管理界面	14

1. 产品描述

基于激光多普勒原理,运用光学集成电路技术,挚感光子科技有限公司自主研发了 MV系列微型激光测振仪,本产品采用独有专利的非线性调频连续波调制解调技术,内含 数据处理单元和运算单元,采样率 5Msps,可测最大振动速度约 22m/s,同时具备出色 的低频测试能力,可测长期位移。

作为一款小型化集成化产品,挚感光子传感器还支持同步测量及大规模组网使用; 支持同时输出数字信号和位移、速度、加速度模拟信号;支持提供客户 SDK 进行二次开 发。

2. 接口说明

Pin1: Ethernet_RX-				
Pin2: Ethernet_RX+				
Pin3: GND	$6 \xrightarrow{5} 4$			
Pin4: Trigger_Out	7 . 3			
Pin5: Trigger_In	1 2 8 8P			
Pin6: Ethernet_TX-	数字及电源接口			
Pin7: Ethernet_TX+				
Pin8: Power (6V~24V,12V typical,4W typical)				
SMA Female: 模拟输出接口 (0~3.3V/-5V~5V)				

3. 传感器接线安装和上位机 IP 设置

将数字及电源线束总成的 8P 航空插头母口插入传感器的航空接头公口,注意防呆箭头提醒,然后将金属螺母拧紧。将电源适配器的输出接口接入数据及电源线束总成, RJ45 网线接入用户上位机网口。传感器上电后,LCD 会显示传感器 IP 地址(缺省 192.168.1.2)、固件和 FPGA 版本、温度及收光强度格。

如果传感器的网线直接插入上位机网口,找到对应的网卡,选择 Internet 协议版本4(TCP/IPv4),按下图修改 IP 地址和子网掩码。

Internet 协议版本 4 (TCP/IPv4) 属性		×
常规		
如果网络支持此功能,则可以获取自动排 络系统管理员处获得适当的 IP 设置。	鎃的 IP 设置。否则,你需要从网	
○ 自动获得 IP 地址(O)		
● 使用下面的 IP 地址(<u>S</u>):		
IP 地址([):	192.168.1.3	
子网掩码(<u>U</u>):	255 . 255 . 255 . 0	
默认网关(D):	• • •	
○ 自动获得 DNS 服务器地址(B)		
● 使用下面的 DNS 服务器地址(E):		
首选 DNS 服务器(P):		
备用 DNS 服务器(<u>A</u>):	• • •	
□退出时验证设置(L)	高级⊻…	
	确定 取消	

如果传感器通过路由器连接上位机,路由器会自动分配 IP 地址,找到对应的网卡,选择 Internet 协议版本 4 (TCP/IPv4),选择自动获得 IP 地址。

用户在使用传感器测试前,需将传感器固定在稳定的工装或光学位移平台上,调节 传感器镜头或测试距离,使待测物对准在传感器光斑最小最亮处,即焦点附近。微调角 度,使测量激光尽可能垂直于被测表面,获得足够良好的接受光功率。建议传感器上电 后热机 15 分钟,内部热稳定后再开始正式测量。

4. 软件说明

4.1 菜单栏功能介绍

项目 模块 工	具 帮助	b -					
模块连接	实时测试	飞 参数设	置 高频测振	数据管理			
初次使用软	件,需	要输入密	密钥: c3Jx-c	AB1-d2p4-	HGV9-eHwA	A-AAAA	
	Ŵ	软件结束	前,请延长使用期	月, 继续激活稽	序	?	\times
			请输入集	您的许可证密锁	月:		
			XXXX-XXXX-XXXX-	-XXXX-XXXX-X	000		
			确认		取消		

密钥到期前 60 天,软件连接后会显示到期的倒计时提示,客户可以联系挚感相关人员 获得延长使用的密钥。

帮助	
语言	•
界面切换	•
版本信息	
•更新最新产品手册	
浏览产品手册	
浏览挚感官网	
更新GUI软件使用授权期限	

1)"项目"

新建工程/打开工程,用户需新建或打开已建的 newpro.prj,测试保存的数据、导出的配置文件等将保存在该 project 所在文件夹内。

◎ 新建工程			?	×
工程名	newpro.prj			
-			<u> </u>	_
路径	D:/svn_osp_release/v9_2024A		浏览	
	The city	72.21		
	42.71			

2) "模块"

模块 工具 帮助	
IP/名称配置	
模拟信号输出	
红光光强范围	•
实时测试丢包设	置 🕨
重启设备	
重启网络	

① IP/名称配置

og IP配置					?	×
IP	192	168	1	2		
gateway	192	168	1	1		
submask	255	255	255	0		
设备名称 						
注: 1)当IP, gateway.submask都为255时, IP地址为默认值(192.168.1.2).或由路由器分配; 2)配置IP示例 IP:192.168.1.100 gateway 192.168.1.1 submask 255.255.255.0; 3)IP配置错误会导致传感器无法正常工作,配置时请确保配置正确。						

② 模拟信号输出

🗯 模拟信号输出	н		-	- 🗆 🛛
输出信号选择	不输出模拟作	言号		
高通滤波	(*10Hz)	0	输出档位 (1 - 24)	0
預估测试范围		灵	<u>教</u> 度 -	
		关闭		

支持输出位移、速度、加速度模拟信号,旋钮可以进行输出档位选择,并显示对应 档位的灵敏度。输出位移模拟信号时,还支持对位移模拟信号做高通滤波设置。

③ 红光光强范围

CLASS II (0⁵9), CLASS III (0⁶5)。红光 PWM 量程 100, 用户亦可在"参数设置" 页面,寄存器索引"guide light, analog output"分页,对寄存器 W_light_pwm_htime 赋值控制红光强度。

	模块	连接 实时测试 参	数设置	高频测振	数据管理	
	寄存	紊配置[20231107]				
寄存器索引				guide lig	ht, analog	output
		Name	Add	ress	Da	ta
	1	W_light_pwm_period	0xc0000a0c		100	
	2	W_light_pwm_htime	0xc0000a10		60	
	3	B_analog_output_shift	0xc0000a14		0	
	4	W_analog_output_hp	0xc000035c		0	
	5	B_output_dac_control	0xc0000cc0		0	
	6	B_output_dac_shift	0xc0000cc4		0	
	7	B_trig_out_pin_en	0xc00009f4		0	
	8	B_sync_1Hz_en	0xc00009f8		0	
	9	B_trig_en	0xc0000a00		0	

④ 实时测试丢包设置

受限于网络传输、CPU利用率等,当传感器设置高采样输出率时,可能存在丢包现 象,默认实时测试丢包时继续刷新。

⑤ 重启设备

选择 IP 地址, GUI 发送命令后,该 IP 地址的传感器会重新启动一次,相当于下电再上电。如果发现有传感器"不接受连接命令"时,可以通过这个方式激活。

⑥ 重启网络

选择 IP 地址,GUI 发送命令后,该 IP 地址的传感器会和正在连接中的上位机断开, 相当于拔插网线。

3)"工具"

工具帮助	
升级	
摄像头	•
数据解析	•
获取传感器ID	
执行传感器授权	

① 升级

当需要更新固件时,升级,选择提供的 bin 文件。

② 摄像头

摄像头,UVC 协议,捕获当前操作人。

③ 数据解析

o9p→csv, 实时测试保存数据 o9p 格式, 转 csv; hs_o9p→csv, 高频测振保存数据 转 csv。用户电脑需安装 MATLAB Runtime (R2022a)。

https://ww2.mathworks.cn/products/compiler/matlab-runtime.html

④ 获取传感器 ID

生成当前传感器 ID 文件, 路径 newpro\ID。

⑤ 执行传感器授权

我司内部操作选项,传感器 ID 文件回传我司,可进行远程授权或延长使用许可期。

- 4)"帮助"
- ① 语言

简体中文/English 切换。

② 界面切换

界面风格经典/渲染切换。

4.2 模块连接界面

按目录 3 准备好后,打开 OSP_MV_V9. exe,如图 4.1,点击"扫描"自动扫描 IP 地址并连接传感器,扫描不成功时可手动输入传感器 LCD 上 IP 地址并"连接",连接成功后,"连接"变为"断开"。

左侧"一级增益"(SIG_GAIN),"二级增益"(PGA_GAIN)支持对接受光功率进行设定调节,"数字自动增益"支持自动调节接收光功率;采样输出率支持选择

0.1/1/8/16/40/78.125/200/312.5/625/1000/1250/2500KHz,选择后点击"设置"。振动 速度范围 B_output_phase_range: 0--低速 1; 1--低速 2; 2--低速 3; 3--中速 1; 4--中速 2 ······

图 4.1

最大可测量振动速度=1.31 * 2[^]phase range /2 * fs,

例采样输出率 fs=78.125K, 低速 1, output_phase_range=0, 最大可测量振动速度 =1.31*2[^]0 ÷2 *78.125=51.171875mm/s。

物体实际振动速度参考公式: v=πfd (d 位移峰峰值), 例 1KHz, 位移峰峰值 16.386221um, 速度峰值=π*1*16.386221=51.478832 mm/s。 若寄存器设置最大可测量振动速度小于物体实际振动速度,会削波。削波可设大振 动速度范围或采样输出率解决,采样输出率设大可以用更小的振动速度范围,速度分辨 率更高。

点击"开始显示数据",左侧会显示采集信号 sig-i、sig-q,右侧为参考信号 refi、ref-q,,中间为收光眼图,底部为收光强度。对光过程中,需达到收光功率正常下收 光强度尽可能高,避免收光功率偏低,更不能收光功率饱和。

4.3 实时测试界面

点击"开始测试",按键变为"停止测试",软件界面会实时刷新所采集数据,如图 4.2,在停止测试时,鼠标右键划选时域部分可局部放大。

图 4.2

点击"设置参数",弹出窗口如图 4.3。

◎ 设置	– 🗆 X
输出报告	堂 置算法
□对数/线性频谱 □高分辨率 □保存数据	□时频图 □十字光标 □实时触发
显示内容 位移 ▼ 加速度单位 医 ▼ 数据 峰峰值 ▼) 最大音量增益(dB) 20 ▼ 红光引导 💧 👘 🕕 🕕
时间/保存设置	
學告:时城窗口呈示时间可以为小数点后一位的浮点数,必须不小于0.4份,并且足0 定时湖试时间是整数,不能设为浮点数。	1.2的倍数:
时域窗口显示时间 (秒)	1.0
定时测试时长 (秒)	0
单个数据文件保存长度 (秒)	
滤波设置	
窗函数	汉宁寅 ▼
高通截止(Hz) null ▼低通	i截止(Hz) null ▼ 自定义
中值滤波	null
频谱波峰相关设置	
频段范围自设定 1~5000Hz	▼ 自定义
特征点:幅度国值 0.000100	μ =
频率间隔 10.000000	*1Hz
幅值范围自定义 null	▼ 自定义
傳里叶平均方式 功率平均 ▼ 频率分辨率	1Hz ▼ 重叠百分比 NA ▼
指数加权系数 0.9 ▼	指数加权项数 3 •

图 4.3

对数/线型频谱: 勾选, 频域按对数显示; 不勾选, 频域按线型显示。

高分辨率:时域波形包含的数据点更多,勾选"高分辨率"时,时域窗口显示时间 最长1秒。

保存数据: 勾选,保存数据 o9p 格式文件,路径\newpro\rtdata。

时频图:勾选"时频图",关掉设置窗口,点击"开始测试",可进行联合时频分析, 尤其对于非平稳信号。

十字光标:勾选,可在时域频域中显示点的坐标。

实时触发:勾选,支持外部触发,需将线束总成的Trig In 接口接入外部信号。

显示内容:支持选择时域显示位移、速度、加速度或声压级。

加速度单位: 支持 g 和 m/s²切换。

数据: 支持频域右侧表格按照峰峰值、半峰值或有效值显示。

最大音量增益(dB):适用于音频输出测试情景下,当●开启时,支持音频输出。

红光引导:支持在 0/59 或 0/65 间切换,见目录 4.1_2)_③。

时域窗口显示时间: 非高分辨率下, 最长显示 80 秒。

定时测试时长:默认 0,连续测试。

单个数据文件保存长度:支持指定单个数据最大保存时长,超出后保存在下一个 o9p 文件。

窗函数: 支持添加汉宁窗、哈明窗、布莱克曼窗。

高通截止:对某一给定频率以下的频率成分有衰减作用,而允许这个截频以上的频率 成分通过。

低通截止:对某一给定频率以上的频率成分有衰减作用,而允许这个截频以下的频率 成分通过。

中值滤波: 基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。

频率范围自设定:支持自定义设置频域横坐标范围。

特征点_幅度阈值: 支持设置幅度阈值下的波峰不在频域右侧表格中显示。

频率间隔:支持设置相邻波峰最小频率间隔。

幅值范围自定义:支持自定义设置频域纵坐标范围。

频率分辨率:低采样输出率下,支持选择更高频率分辨率。

输出报告: 生成包含版本信息、原始数据、采集数据和参数设置的 PDF, 路径 \newpro\report。

重置算法: 当算法收敛异常时,"重置算法"可快速找到正确的收敛位置。

数据回放,点击"o9p回放",打开保存的o9p数据,弹出窗口可设置回放起始时间和回放时长。

◎ 回放时间设置	?	\times
回放起始时间 0.0 🚖	总时长(s)	
回放时长 999999.99 🔿	10. 29	
设置		

4.4 参数设置界面

该界面寄存器设置为我司内部调试传感器选项,不建议用户更改以免影响传感器正常使用。当用户多种测试场景需要使用多种不同的寄存器设置时,可点击"导出配置(ecf, rcf)"保存为测试场景一寄存器配置,经我司远程调好适用测试场景二的寄存器配置后, "导出配置(ecf, rcf)"保存为测试场景二寄存器配置,在不同场景下,分别"从本地 文件导入 ecf""从本地文件导入 rcf"切换使用,如图 4.4。

寄存器每次更改会默认保存到传感器 EEPROM 中,同场景下再次上电使用时,无需再次导入配置 ecf、rcf。

图 4.4

4.5 高频测振界面

采样输出率 5M,采集数据为单一数据流 13.1ms,并非连续数据。显示内容支持选

择位移、速度或加速度;保存数据 piece_xxxxx.o9p,路径\newpro\hsdata;启动触发 信号支持外部触发,需将线束总成的 Trig In 接口接入外部信号。"起始时间 A"和"结 束时间 B"旋钮支持设置时域窗口显示时间,单位微秒,如图 4.5。

图 4.5

4.6 数据管理界面

csv 文件夹: o9p 转 csv, hs_o9p 转 csv; formula 文件夹: 配置 ecf, rcf; hsdata 文件夹: 高频测振保存数据; ID 文件夹: 菜单栏, 工具, 获取传感器 ID; rawdata 文件夹: 模块连接界面原始数据保存; report 文件夹: 实时测试界面输出报告; rtdata 文件夹: 实时测试保存数据; sound_records 文件夹: 音频输出保存 wav 文件。

	🕫 🗙 🖝 🗢 🔽 🗀 D:\svn_osp_release\v9_2024A\newpro\rtdata			
sv	📁 rtdata 🖾			
iormula	Name	^ Size	Туре	Date Modified
hsdata	2	_	File Folder	2024/3/18 15:10
D	WMH23130268_v9.1_F20231108_F#625.0K[018]_192.168.1.2_20240318_170815_No000.o9p	目放	.61 MiB o9p File	2024/3/18 17:08
awdata		hs_09p->csv		
eport		52 M		
Idata		田 印秋		
aund recercle		打开文件所在目录		
lecous		上传云端		